This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Synthesis of Hindered Silyl Ethers via Fragmentation Reactions

Mohammad G. Asadia; Kazem D. Safab; Zahr A. Shamsib

^a Azarbaijan University of Tarbiat Moallem, Tabriz, Iran ^b Faculty of Chemistry, University of Tabriz, Iran

To cite this Article Asadi, Mohammad G. , Safa, Kazem D. and Shamsi, Zahr A.(2003) 'Synthesis of Hindered Silyl Ethers via Fragmentation Reactions', Phosphorus, Sulfur, and Silicon and the Related Elements, 178:9,2073-2079

To link to this Article: DOI: 10.1080/10426500390228765 URL: http://dx.doi.org/10.1080/10426500390228765

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 178:2073-2079, 2003

Copyright © Taylor & Francis Inc.

ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500390228765

SYNTHESIS OF HINDERED SILYL ETHERS VIA FRAGMENTATION REACTIONS

Mohammad G. Asadi, a Kazem D. Safa, b and Zahr A. Shamsib Azarbaijan University of Tarbiat Moallem, Tabriz, Irana and Faculty of Chemistry, University of Tabriz, Iranb

(Received February 3, 2003; in final form April 1, 2003)

Reaction of alcoholic sodium alkoxides with $(Me_3Si)_3CSi(C_6H_4-OMe-p)MeX$ have been performed. Main products are of the type: $(Me_3Si)_2CHSi(An)Me(OR)$ and $Me_3SiCH_2Si(An)Me(OR)$; $An = (C_6H_4-OMe-p)$ and OR = OEt, OPr, O iso-Pr, OBu, O iso-Bu, O iso-Amyl, OBen-zyl, OAllyl, Ofurfuryl. It is suggested that the reaction proceeds through an elimination-addition mechanism.

Keywords: Alkoxides; fragmentation; organosilicon

Because of the large bulk of the $(Me_3Si)_3C$ group (the "trisyl" group, often denoted below by Tsi), compounds of the type $(Me_3Si)_3CSiRR'X$ (e.g., X= halogen or H) undergo direct biomolecular nucleophilic displacement of X only with difficulty, and this permits observations of other reactions not normally encountered. For example, the halides $(Me_3Si)_3CSi(C_6H_4OMe-p)MeX$ (X=F,Br,I) react with nucleophilic species such as alkoxides in alcoholic solvents to give, wholly or in part, fragmented products of the type $(Me_3Si)_2CHSi(C_6H_4OMe-p)Me(OR)$, $(Me_3Si)CH_2Si(C_6H_4OMe-p)Me(OR)$, or hydrolyzed products. $(Me_3Si)_2CHSi(C_6H_4OMe-p)Me(OR)$, or hydrolyzed products.

The iodide $(Me_3Si)_3CSi(C_6H_4OMe-p)MeI$ reacts with a electrophilic reagent such as silver triflouroacetate to give a rearranged product of the type $(Me_3Si)_2C(SiMe_2I)(SiMe_2COOCF_3)$.

RESULT AND DISCUSSION

Our first observation was that all halides $TsiSi(C_6H_4OMe-p)MeX(X=halogen)$ undergo fragmentation reaction in refluxing sodium

We thank Dr. M. Mahkam for helpful comments.

Address correspondence to Mohammad G. Asadi, Chemistry Department, Faculty of Science, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran. E-mail: kazemdsafa@yahoo.com

methoxide in methanol.¹¹ In this work we used 1.5–2.5 M of alkoxide solutions as reagents.

In an attempt to make $TsiSi(C_6H_4OMe-p)MeF$ we prepared $Si(C_6H_4OMe-p)MeCl_2$ then reacted this with KHF₂ salt to give $Si(C_6H_4OMe-p)MeF_2$ and then this compound was treated with TsiLi to give $TsiSi(C_6H_4OMe-p)MeF$. The reduction of this compound with LiAlH₄ in THF did not give $TsiSi(C_6H_4OMe-p)MeH$. For this reason we prepared $MeSiH(C_6H_4OMe-p)Cl$.

Also, we prepared $TsiSi(C_6H_4OMe-p)MeI$ from the reaction of $TsiSi(C_6H_4OMe-p)MeH$ and ICl/CCl_4 at room temperature and $TsiSi(C_6H_4OMe-p)MeBr$ from $TsiSi(C_6H_4OMe-p)MeH$ with Br_2/CCl_4 at room temperature; the iodide and bromide derivatives were reacted with alkoxide solutions.

In this way, we prepared $(Me_3Si)_2CHSi(C_6H_4OMe-p)Me(OR)$ and $(Me_3Si)CH_2Si(C_6H_4OMe-p)Me(OR)$ compounds.

The mechanism of these reactions include two-steps: elimination and addition. In the first step with attack of alkoxide a silaolefin forms and in the later step solvolysis takes place. When the group of alkoxides is small the reaction of the iodide derivative is faster than the others, but when alkoxide was a large group the reaction of the fluoride derivatives was faster than the other halogens, because of the steric effect of alkoxide and the leaving group.

In this way we prepared novel organosilicon compounds. These reactions confirm the fragmentation mechanism. With increasing bulkiness of the alkoxide groups, the reaction was difficult to perform. Also, we used the new alkoxides that never were used later, and prepared fragmentation products of those alkoxides.

EXPERIMENTAL

Solvent and Reagents

The reactions involving lithium metal, organolithium reagents or LiAlH₄, and alkoxides were carried out under dry argon. Solvents were dried by standard methods.

Spectra

Melting points were taken on an electromental 9100-digital melting point apparatus. The ¹HNMR spectra were recorded with ¹HNMR Bruker FT-500 MHZ and NMR (80 MHZ). The mass spectra were run on a Shimadzu QP-100X spectrometer Finnigan, 70 ev.

Substrate	Alkoxide solution	Time (h)	Product yield (%)
TsiSiAnMe F	EtONa/EtOH	7	52
TsiSiAnMe F	ⁿ BuONa/ ⁿ BuOH	12	20
TsiSiAnMe F	ⁱ AmONa/ ⁱ AmOH	28	22
TsiSiAnMe F	CH ₂ =CH-CH ₂ ONa/CH ₂ =CH-CH ₂ OH	8	51
TsiSiAnMe I	EtONa/EtOH	5	30
TsiSiAnMe I	ⁿ BuONa/ ⁿ BuOH	18	10
TsiSiAnMe I	ⁱ AmONa/ ⁱ AmOH	35	16
TsiSiAnMe I	CH ₂ =CH-CH ₂ Ona/CH ₂ =CH-CH ₂ OH	11	36
TsiSiAnMe Br	EtONa/EtOH	5	20

TABLE I Reaction of TsiSi(C₆H₄-OMe-p)MeX

Preparation of TsiSi(C₆H4-OMe-p)MeF

(C₆H₄-OMe-p) SiMeCl₂ (0.22 g, 0.1 mmol), KHF₂ (16 g, 0.2 mmol), and n-heptan (150 ml) were mixed at 70–80°C for 1 h, then KF filtered and the solution cooled to form the solid, which was recrystallized to give (C₆H₄-OMe-p)SiMeF₂ (70%). (C₆H₄-OMe-p) SiMeF₂ (9.4 g, 59 mmol) was added to a solution of TsiLi (50 mmol) in THF (100 ml) and the mixture was refluxed for 3 h. The solution was treated with an aqueous solution of NH₄Cl, the organic layer was separated, dried (Na₂ SO₄), and the solvent was removed. The pure product was obtained from recrystalization in EtOH to give TsiSi(C₆H₄-OMe-p)MeF (70%), m.p. 109°C FT-¹HNMR (CDCl₃) 0.25(s, 27H, Tsi), 0.39(s, 3H, SiMe), 3.82(s, 3H, OMe-aryl), 6.8–7.8 ppm (m, 4H, C–H aryl), m/z (EI): 385(22%, [M-Me]+), 293(18), 205(80), 201(100), 185(65). (Found: C, 53.5; H, 8.7. C₁₈H₃₇Si₄FO), (M_w = 400). (Calculated: C, 54; H, 9.2%).

Reaction of TsiSi(C₆H₄-OMe-p)MeF with NaOEt/EtOH

TsiSi $(C_6H_4\text{-OMe-}p)\text{MeF}$ (0.5 g, 1.25 mmol) was refluxed in 2.5 M NaOEt/EtOH solution (30 ml) for 7 h. The solution was added to petroleum ether, the organic layer was washed several times with water, the organic layer was separated, dried $(Na_2\text{ SO}_4)$, filtered, and the solvent evaporated and the residue was purified by TLC (silicagel, 60:40 dichloromethane: petroleum ether as eluent) to give the following products:

i) (Me₃Si)₂ CHSiMe(An)OEt FT-¹HNMR (CDCl₃) 0.27(s, lH, CH), -0.001(d, 18H, Me₃Si), 0.48. (s, 3H, Si-Me), 3.5(q, 2H, Si-OCH₂), 1.1(t, 3H, Si-OCH₂ CH₃), 3.82(s, 3H, OMe-aryl), 6.8-7.5 ppm (m, 4H, aryl). m/z (EI): 339(100%, [M-Me]⁺), 309(12), 294(4), 266(4), 281(1).

- (Found: C, 58; H, 9.7. $C_{17}H_{34}Si_3O_2$), ($M_w = 354$), (Calculated: C, 57.6; H, 9.6%).
- ii) $Me_3SiCH_2SiMe(An)OEt\ FT^-1HNMR\ (CDCl_3)\ 0.2(s, 2H, CH_2),\ 0.09(s, 9H,\ Me_3Si),\ 0.4(s, 3H,\ Si-Me),\ 3.5(q, 2H,\ Si-OCH_2),\ 1.1(t, 3H,\ Si-OCH_2\ CH_3),\ 3.82(s, 3H,\ OMe-aryl),\ 6.89-7.5\ ppm\ (m,\ 4H\ aryl-H).\ m/z\ (EI):\ 282(6\%,\ [M]^+),\ 267(10\%,\ [M-Me]^+).\ (Found:\ C,\ 59.2;\ H,\ 8.9.\ C_{14}H_{26}Si_2O_2), (M_w=282).\ (Calculated:\ C,\ 59.5;\ H,\ 9.2\%).$

Reaction of TsiSi(C₆H₄-OMe-p)MeF with NaOⁿPr/ⁿPrOH

A solution of $TsiSi(C_6H_4\text{-}OMe\text{-}p)MeF$ (0.3 g, 0.75 mmol) in 2.5 M $NaO^nPr/^nPrOH$ (40 ml) was refluxed for 15 h, then worked up with a solution of water and petroleum ether. The organic layer was separated, washed several times with water, dried ($Na_2 SO_4$), filtered, and the filtrate evaporated. The resulting liquid product mixture was subjected to preparative TLC (silicagel, 50:50 dichloromethane: petroleum ether as eluent) to give $Me_3SiCH_2SiMe(An)O^nPr$.

FT-¹HNMR (CDCl₃), 0.0089(s, 9H, Me₃Si), 0.058(s, 2H, CH₂), 0.4(s, 3H, Si–Me), 0.87(t, 3H, CH₃), 1.5(m, 2H, CH₂), 3.5(t, 2H, O–CH₂), 3.82(s, 3H, OMe-aryl), 6.8–7.5 ppm (m, 4H arylC–H) m/z (EI): 296(2%, [M]+), 281(8%, [M-Me]+), 239(4), 209(6), 223(4), 131(100). (Found: C, 60.5; H, 9.2. $C_{15}H_{28}Si_2O_2$), (M_w = 296). (Calculated: C, 60.8; H, 9.4%).

Reaction of TsiSi(C₆H₄-OMe-p)MeF with NaOⁱPr/ⁱPrOH

A solution of $TsiSi(C_6H_4\text{-}OMe\text{-}p)MeF$ (0.3 g, 0.75 mmol) in 2.5 M $NaO^nPr/^nPrOH$ (50 ml) was refluxed for 15 h, then worked up with a solution of water and petroleum ether. The organic layer was separated, washed several times with water, dried (Na_2 SO_4), filtered, and the filtrate evaporated. The resulting liquid product mixture was subjected to preparative TLC (silicagel, 60:40 dichloromethane: petroleum ether as eluent) to give the following products:

- i) $Me_3SiCH_2SiMe(An)O^iPr$ FT-¹HNMR (CDCl₃), $-0.0029(s, 9H, Me_3Si)$, $0.05-0.1(s, 2H, CH_2)$, 0.4(s, 3H, Si-Me), $1.0-1.1(d, 6H, CH(CH_3)_2)$, 3.95(m, 1H, O-CH), 3.82(s, 3H, OMe-aryl), 6.9-7.5 ppm (m, 4H arylC-H). m/z (EI): $296(6\%, [M]^+)$, $281 (10\%, [M-Me]^+)$, 239(24), 223(1), 131(100). (Found: C, 61.1; H, 9.6. $C_{15}H_{28}Si_2O_2)$, ($M_w = 296$). (Calculated: C, 60.8; H, 9.4%).
- ii) Me₃SiCH₂SiMe(An)OH FT-¹HNMR (CDCl₃), 0.034 (s, 9H, Me₃Si), 0.09–0.2(s, 2H, CH₂), 0.4(s, 3H, Si–Me), 1.6(s, 1H, OH), 3.82(s, 3H, OMe-aryl), 6.9–7.5 ppm (m, 4H aryl C–H). m/z (EI): 254(1%, [M]+), 239(22%, [M-Me]+), 223(2), 167(34). (Found: C, 56.4; H, 8.3. $C_{12}H_{22}Si_2O_2$), (M_w = 254). (Calculated: C, 56.7; H, 8.6%).

Reaction of TsiSi(C₆H₄-OMe-p)MeF with NaOⁿBu/ⁿ BuOH

A solution of $TsiSi(C_6H_4\text{-}OMe\text{-}p)MeF$ (0.3 g, 0.75 mmol) in 2.5 M NaOⁿBu/ⁿBuOH (30 ml) was refluxed for 30 h, then worked up with a solution of water and petroleum ether. The organic layer was separated, washed several times with water, dried (Na₂ SO₄), filtered, and the filtrate evaporated. The resulting liquid product mixture was subjected to preparative TLC (silicagel, 60:40 dichloromethane: petroleum ether as eluent) to give $Me_3SiCH_2SiMe(An)O^nBu$.

 $\begin{array}{l} FT^1HNMR~(CDCl_3),~0.01(s,~9H,~Me_3Si),~-0.009(s,~2H,~CH_2),~0.4(s,~3H,~Si-Me),~0.9(t,~3H,CH_3),~1.1(m,~2H,~CH_2),~1.3(m,~2H,~CH_2),~3.9(t,~2H,~O-CH_2),~3.82(s,~3H,~OMe-aryl),~6.9-7.5~ppm~(m,~4H,~C-H~aryl),~m/z~(EI):~295(6\%,~[M-Me]^+),~279(14),~278(20),~277(72),~205(48),~72(100),~(Found:~C,~61.5;~H,~9.4.~C_{16}H_{30}Si_2O_2),~(M_w=310).~(Calculated:~C,~61.9;~H,~9.6\%). \end{array}$

Reaction of TsiSi(C₆H₄-OMe-p)MeF with NaOⁱBu/ⁱBuOH

 $TsiSi(C_6H_4\text{-}OMe\text{-}p)MeF$ (0.5 g, 1.25 mmol) was refluxed in 2.5 M NaO^iBu^i BuOH solution (30 ml) for 7 h. The solution was added to petroleum ether, the organic layer was washed several times with water, the organic layer was separated, dried (Na_2 SO₄), filtered, the solvent evaporated and the residue was purified by TLC (silicagel, 60:40 dichloromethane: petroleum ether as eluent) to give $Me_3SiCH_2SiMe(An)O^iBu$.

 $FT^{-1}HNMR~(CDCl_3)-0.04(s,\,9H,\,Me_3Si),\,0.04-0.09(s,\,2H,\,Si-CH_2),\,0.39(s,\,3H,\,Si-Me),\,0.89(d,\,6H,CH(CH_3)_2),\,1.78(m,\,1H,\,CH),\,3.3(d,\,2H,\,O-CH_2),\,3.84(s,\,3H,\,OMe-aryl),\,6.9-7.5~ppm~(m,\,4H,\,C-H~aryl).~m/z~(EI):\,310(4\%,~[M]^+),\,\,295(36\%,~[M-Me]^+),\,\,240(24),\,\,239(98),\,\,131(100).~(Found:\,C,\,61;\,H,\,9.4.\,\,C_{16}H_{30}Si_2O_2),\,(M_w=310).~(Calculated:\,C,\,61.9;\,H,\,9.6\%).$

Reaction of TsiSi(C₆H₄-OMe-p)MeF with NaOⁱAm/ⁱAmOH

A solution of $TsiSi(C_6H_4\text{-}OMe\text{-}p)MeF$ (0.2 g, 0.5 mmol) in 2.5 M $NaO^iAm/^iAmOH$ (30 ml) was refluxed for 48 h, then worked up with a solution of water and petroleum ether. The organic layer was separated, washed several times with water, dried ($Na_2\ SO_4$), filtered, and the filtrate evaporated. The resulting liquid product mixture was subjected to preparative TLC (silicagel, 1:1 dichloromethane: cyclohexane as eluent) to give $Me_3SiCH_2SiMe(An)\ O^iAm$.

FT-1HNMR (CDCl₃) -0.05(s, 9H, Me₃Si), 0.09(s, 2H, Si-CH₂), 0.37(s, 3H, Si-Me), 0.85(d, 6H,CH(CH₃)₂), 1.4-1.5 (m, 2H, CH₂), 0.9(m, 1H,

CH), 3.54(t, 2H, O–CH₂), 3.8(s, 3H, OMe-aryl), 6.8–7.4 ppm (m, 4H, C–H aryl). m/z (EI): 309(6%, [M-Me]⁺), 239(8), 237(4), 207(4), 147(18), 131(100). (Found: C, 62.7; H, 9.6. $C_{17}H_{32}Si_2O_2$),($M_w=324$). (Calculated: C, 62.9; H, 9.8%).

Reaction of TsiSi(C₆H₄-OMe-p)MeF with CH₂CH=CH₂ONa/CH₂-CHCH₂OH

TsiSi(C_6H_4 -OMe-p)MeF (0.37 mmol) was refluxed in 2 M CH₂CH= CH₂ONa/CH₂=CHCH₂OH solution (30 ml) for 8 h. The solution was added to petroleum ether, the organic layer was washed several times with water, the organic layer was separated, dried (Na₂ SO₄), filtered, the solvent evaporated, and the residue was purified by TLC (silicagel, 60:40 dichloromethane: petroleum ether as eluent) to give the following products:

- i) $(Me_3Si)_2CHSiMe(An)OCH_2CH=CH_2\ FT^{-1}HNMR\ (CDCl_3)\ -0.2(s, 1H, CH), -0.04-0.1\ (d, 18H, Me_3Si), 0.48(s, 3H, Si-Me), 3.9(d, 2H, OCH_2), 4.9-5.2\ (m, 2H, =CH_2), 5.8(m, 1H, =CH), 3.82(s, 3H, OMe-aryl), 6.9-7.4\ ppm\ (m, 4H, aryl).\ m/z\ (EI): 351(12\%, [M-Me]^+), 309(1), 236(2), 221(2), 203(100).\ (Found: C, 59.3; H, 9.2.\ C_{18}H_{34}O_2), (M_w = 366).\ (Calculated: C, 59; H, 9.3\%)$
- ii) $Me_3SiCH_2SiMe(An)OCH_2CH=CH_2$ FT- 1HNMR (CDCl $_3$) 0.095(s, 2H, CH $_2$), -0.04(s, 9H, Me $_3Si$), 0.39(s, 3H, Si-Me), 4.1(d, 2H, OCH $_2$), 5.1-5.3 (m, 2H, =CH $_2$), 5.9(m, 1H, =CH), 3.82(s, 3H, OMe-aryl), 6.9-7.4 ppm (m, 4H, aryl). m/z (EI): 294(4%,[M]+), 279(8%,[M-Me]+), 239(24), 207(10), 131(100). (Found: C, 61.6; H,8.6. $C_{15}H_{26}Si_2O_2$), ($M_w = 294$). (Calculated: C, 61.2; H, 8.8%).

Reaction of TsiSi(C₆H₄-OMe-p)MeF with NaOCH₂Ph/PhCH₂OH

A solution of $TsiSi(C_6H_4\text{-}OMe\text{-}p)MeF$ (0.5 g, 1.25 mmol) in 2.5 M NaOCH₂Ph/PhCH₂OH (30 ml) was refluxed for 75 h, then worked up with a solution of water and petroleum ether. The organic layer was separated, washed several times with water, dried (Na₂ SO₄), filtered, and the filtrate evaporated. The resulting liquid product mixture was subjected to preparative TLC (silicagel, 1:1 dichloromethane: cyclohexane as eluent) to give Me_3Si $CH_2SiMe(An)OCH_2Ph$.

FT-¹HNMR (CDCl₃), $-0.01(s, 9H, Me_3Si)$, 0.01-0.2 (s, $2H, Si-CH_2$), 0.4(s, 3H, Si-Me), 3.85(s, 3H, OMe-aryl), $4.6(s, 2H, OCH_2)$, 6.9-7.5 ppm (m, 9H, C-H aryl). m/z (EI): $344(1\%, [M]^+)$, $329(0.5\%, [M-Me]^+)$, 336(6), 257(0.5), 131(68), 91(100). (Found: C, 66.3;H, $8.1.C_{19}H_{28}Si_2O_2$), ($M_w = 344$). (Calculated: C, 66.2; H, 8.1%).

Reaction of TsiSi(C₆H₄-OMe-p)MeF with Furfuryloxy Sodium, Furfuryalcohol

 $TsiSi(C_6H_4\text{-}OMe\text{-}p)MeF\ (0.25\ mmol)$ was refluxed in 1.5 M furfuryloxy sodium, furfurylalcohol solution (25 ml) for 7 h. The solution was added to petroleum ether, the organic layer was washed several times with water, the organic layer was separated, dried (Na₂ SO₄), filtered, the solvent evaporated, and the residue was purified by TLC (silicagel, 60:40 dichloromethane: petroleum ether as eluent) to give Anisolemethylfurfuryloxymethyltrimethylsilylsilane.

FT-¹HNMR (CDCl₃) -0.03(s, 9H, Me₃Si), 0.04-0.2 (s, 2H, CH₂), 0.42(s, 3H, Si-Me), 3.85(s, 3H, OMe-aryl), 4.6 ppm (s, 2H, OCH₂), 6.3(m, 1- α H, Furfuryl alcohol), 6.9-7.5 (m, 4H, aryl), 7.4(m, $2-\beta$ H, Furfuryl alcohol). m/z (EI): $332(4\%, \text{ [M-2H]}^+)$, 261(4), 247(1), 237(12), 222(6), 165(100). (Found: C, 60.8; H, 7.5. $C_{17}H_{26}Si_2O_3$), (M_w = 334). (Calculated: C, 61.1; H, 7.7%).

REFERENCES

- S. S. Dua, C. Eaborn, D. A. R. Happer, S. P. Hopper, K. D. Safa, and D. R. M. Wolton, J. Organomental. Chem., 178, 75 (1979).
- [2] C. Eaborn, D. A. R. Happer, K. D. Safa, and D. R. M. Walton, J. Organometal. Chem., 157, C50 (1978).
- [3] C. Eaborn, D. A. R. Happer, S. P. Hopper, and K. D. Safa, J. Organometal. Chem., 170, C9 (1979).
- [4] C. Eaborn, D. A. R. Happer, P. B. Hitchcock, S. P. Hopper, K. D. Safa, and S. S. Washburne, J. Organometal. Chem., 180, 309 (1980).
- [5] C. Eaborn, D. A. R. Happer, and K. D. Safa., J. Organometal. Chem., 191, 355 (1980).
- [6] C. Eaborn and S. P. Hopper, J. Organometal. Chem., 170, C51 (1979).
- [7] C. Eaborn, D. A. R. Happer, S. P. Hopper, and K. D. Safa, J. Organometal. Chem., 188, 179 (1980).
- [8] A. G. Brook, K. D. Safa, P. D. Lickiss, and K. M. Baines, J. Amer. Chem. Soc., 107, 4338 (1985).
- [9] B. H. Boo, S. K. Hong, and S. K. Kang, Bull. Korean. Chem. Soc., 16, 30 (1995).
- [10] A. Almansour, J. Organometal. Chem., 533, 57 (1997).
- [11] K. D. Safa, A. R. Koushki, and M. G. Asadi, J. Phosphorus, Sulfur, and Silicon, 158, 97 (2000).
- [12] K. D. Safa, A. Asadi, and M. Sargordan, J. Organometal. Chem., 545-546, 61 (1997).